Abstract
This study uses aerosol optical depth (AOD) and cloud properties data to investigate the influence of aerosol on the cloud properties over the Tibetan Plateau and its adjacent regions. The study regions are divided as the western part of the Tibetan Plateau (WTP), the Indo-Gangetic Plain (IGP), and the Sichuan Basin (SCB). All three regions show significant cloud effects under low aerosol loading conditions. In WTP, under low aerosol loading conditions, the effective radius of liquid cloud particles (LREF) decreases with the increase of aerosol loading, while the effective radius of ice cloud particles (IREF) and cloud top height (CTH) increase during the cold season. Increased aerosol loading might inhibit the development of warm rain processes, transporting more cloud droplets above the freezing level and promoting ice cloud development. During the warm season, under low aerosol loading conditions, both the cloud microphysical (LREF and IREF) and macrophysical (cloud top height and cloud fraction) properties increase with the increase of aerosol loading, likely due to higher dust aerosol concentration in this region. In IGP, both LREF and IREF increase with the increase in aerosol loading during the cold season. In SCB, LREF increases with the increase in aerosol loading, while IREF decreases, possibly due to the higher hygroscopic aerosol concentration in the SCB during the cold season. Meteorological conditions also modulate the aerosol-cloud interaction. Under different convective available potential energy (CAPE) and relative humidity (RH) conditions, the influence of aerosol on clouds varies in the three regions. Under low CAPE and RH conditions, the relationship between LREF and aerosol in both the cold and warm seasons is opposite in the WTP: LREF decreases with the increase of aerosol in the cold season, while it increases in the warm season. This discrepancy may be attributed to a difference in the moisture condition between the cold and warm seasons in this region. In general, the influence of aerosols on cloud properties in TP and its adjacent regions is characterized by significant nonlinearity and spatial variability, which is likely related to the differences in aerosol types and meteorological conditions between different regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.