Abstract

We spend most of our time in built environments. The cumulative exposure to particulate matter (PM) occurring in these built environments can potentially be comparable to or even exceed that occurring outdoors. Therefore, it is critical to understand the sources, dynamics, and fate of PM in built environments. This work focuses on aerosol dynamics modeling (including coagulation, deposition, and exfiltration) of sub-500 nm particles measured inside a test house during the HOMEChem campaign while performing prescribed cooking activities. Deposition characteristics of the test house, emission rates and factors, and the fate of particles are presented. Number emission rates calculated for two different heat sources (stove and hot plate) and the various meals cooked on them were highest for sub-10 nm particles. Coagulation and deposition contributed comparably to the particle number concentration decay. Most of the PM (90% number-based and 70% mass-based) deposited within the house while the remaining fraction left the test house volume via exfiltration. Simulation results show that while increased air exchange rate reduces indoor PM mass concentration, it can lead to increased number concentration. An increase from 0.5 to 5 ACH (comparable to the equivalent air change rate from running a well-dimensioned portable air cleaner) would result in a 70% reduction in PM mass-based exposure while a further increase from 5 to 20 ACH would only result in an additional 21% reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.