Abstract
Carbon nanotube (CNT) films are extensively researched as a promising material for wearable thermoelectric generators (TEGs) owing to their good flexibility and high thermoelectric conversion ability. Miniaturizing a pair of p- and n-type thermocouples and increasing the number of repeating elements can effectively increase the power of TEGs. However, conventional p-n patterning methods, such as dipping and printing, have a coarse resolution at the submillimeter level, thereby limiting the miniaturization rate. This study developed an aerosol doping system as a fine n-doping method. A dopant aerosol with a <3 μm diameter was formed through ultrasonic nebulization and air separation, while n-doping was achieved by exposing the CNT film to the dopant aerosol. Microscale p-n patterning of 1 μm was achieved through exposure using small-sized aerosols at an exceptionally slow rate of 3 Å/min. This resolution is 100 times higher than those of conventional p-n patterning methods. The developed aerosol doping system for CNTs can also be used on organic semiconductor materials, such as PEDOT/PSS and perovskite materials. Therefore, it has the potential to significantly impact the realization of Internet of Things (IoT) terminals, such as flexible TEGs, transistors, and solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.