Abstract
Aerosols play an important role in the energy budget of the earth-atmosphere system. In this paper, we studied aerosol shortwave direct radiative forcing (DRF) effects in Pearl River Delta based on SBDART and a 'two-layer-single-wavelength' model. Simulation results indicated that the underlying surface type and solar zenith angle have significant impacts on aerosol radiative forcing. The comparison between aerosol radiative forcing effects on urban asphalt surface and vegetation shows cooling and warming effects of aerosol shortwave radiative forcing on urban asphalt are much more apparent than that on vegetation, implying aerosols over asphalt-predominated cities will impact the local climate. Then we estimated variations of average DRF and net radiation flux with solar zenith angle in the Pearl River Delta. DRF indicates warming at solar zenith angles of 0°, 20°, 40° and 60°, but cooling at 80°. Net radiation flux increases with a decrease in aerosol optical thickness (AOT) at low elevation, but with an increase in AOT above 5 km.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.