Abstract

While most examples of nanoparticle therapeutics have involved parenteral or IV administration, pulmonary delivery is an attractive alternative, especially to target and treat local infections and diseases of the lungs. We describe a successful dry powder formulation which is capable of delivering nanoparticles to the lungs with good aerosolization properties, high loadings of nanoparticles, and limited irreversible aggregation. Aerosolizable mannitol carrier particles that encapsulate nanoparticles with dense PEG coatings were prepared by a combination of ultrasonic atomization and spray freeze drying. This process was contrasted to particle formation by conventional spray drying. Spray freeze drying a solution of nanoparticles and mannitol (2wt% solids) resulted in particles with an average diameter of 21 ± 1.7μm, regardless of the fraction of nanoparticles loaded (0-50% of total solids). Spray freeze dried (SFD) powders with a 50% nanoparticle loading had a fine particle fraction (FPF) of 60%. After formulation in a mannitol matrix, nanoparticles redispersed in water to < 1μm with hand agitation and to < 250nm with the aid of sonication. Powder production by spray drying was less successful, with low powder yields and extensive, irreversible aggregation of nanoparticles evident upon rehydration. This study reveals the unique advantages of processing by ultrasonic spray freeze drying to produce aerosol dry powders with controlled properties for the delivery of therapeutic nanoparticles to the lungs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.