Abstract

BackgroundThis systematic review aimed to assess inhaled drug delivery in mechanically ventilated patients or in animal models. Whole lung and regional deposition and the impact of the ventilator circuit, the artificial airways and the administration technique for aerosol delivery were analyzed.MethodsIn vivo studies assessing lung deposition during invasive mechanical ventilation were selected based on a systematic search among four databases. Two investigators independently assessed the eligibility and the risk of bias.ResultsTwenty-six clinical and ten experimental studies were included. Between 30% and 43% of nominal drug dose was lost to the circuit in ventilated patients. Whole lung deposition of up to 16% and 38% of nominal dose (proportion of drug charged in the device) were reported with nebulizers and metered-dose inhalers, respectively. A penetration index inferior to 1 observed in scintigraphic studies indicated major proximal deposition. However, substantial concentrations of antibiotics were measured in the epithelial lining fluid (887 (406–12,819) μg/mL of amikacin) of infected patients and in sub-pleural specimens (e.g., 197 μg/g of amikacin) dissected from infected piglets, suggesting a significant distal deposition. The administration technique varied among studies and may explain a degree of the variability of deposition that was observed.ConclusionsLung deposition was lower than 20% of nominal dose delivered with nebulizers and mostly occurred in proximal airways. Further studies are needed to link substantial concentrations of antibiotics in infected pulmonary fluids to pulmonary deposition. The administration technique with nebulizers should be improved in ventilated patients in order to ensure an efficient but safe, feasible and reproducible technique.

Highlights

  • This systematic review aimed to assess inhaled drug delivery in mechanically ventilated patients or in animal models

  • The aim of this review is to evaluate studies that assessed in vivo lung delivery of inhaled drugs to mechanically ventilated patients or animal models either as absolute drug concentrations or quantitative deposition relative to the nominal dose to: (1) provide current knowledge on whole lung deposition; (2) examine the distribution and penetration of inhaled drugs into different regions of the respiratory tract; (3) determine how the ventilator circuit and the artificial airways impact aerosol delivery and (4) discuss the administration techniques applied in these studies

  • Twenty clinical studies evaluated critically ill ventilated patients who were suffering from documented nosocomial lung infection (ventilator-associated tracheobronchitis (VAT) or ventilator-associated pneumonia (VAP)) or were ventilated for others reasons such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) or other types of respiratory infection

Read more

Summary

Introduction

This systematic review aimed to assess inhaled drug delivery in mechanically ventilated patients or in animal models. Whole lung and regional deposition and the impact of the ventilator circuit, the artificial airways and the administration technique for aerosol delivery were analyzed. Many factors influence aerosol delivery to the lungs during mechanical ventilation and are related to the drug, the device, the patient, the ventilator circuit, the artificial airways and the ventilator settings [5]. These factors have been primarily studied in vitro [6,7,8].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.