Abstract

Abstract The Fengyun-4A (FY-4A) meteorological satellite, a next-generation geostationary meteorological satellite, was launched on December 11, 2016. For instance, the Advanced Geosynchronous Radiation Imager (AGRI) aboard FY-4A (AGRI/FY-4A) takes full-disk images at a 15-min interval in 14 spectral bands with the 0.5–4-km resolution. Here we developed data assimilation system based on the Gridpoint Statistical Interpolation (GSI) system in which the Aerosol Optical Depth (AOD) derived from FY-4A data were successfully assimilated for the first time. The capability to assimilate FY-4A Aerosol optical depth (AOD) with an hourly cycling configuration was then evaluated by a dust storm over East Asia during 12–14 May 2019. The analyses initialized Weather Research and Forecasting-Chemistry (WRF-Chem) model forecasts. The system is tested with FY-4 AOD, Himawari-8 AOD in experiments and then the results are compared to the Aerosol Robotic Network (AERONET) AOD observations, which serving as the independent observations. The results indicated that assimilating FY-4 AOD substantially showed much better agreement with observations than those from the control. Furthermore, the Bias and RMSE generally reduced about 20% with forecast range. This study indicates that the aerosol data assimilation using data from FY-4A can be used to improve the performance of forecast model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call