Abstract

Abstract. This paper presents the first results about the assimilation of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) extinction coefficient measurements onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite in the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) chemistry transport model of Météo-France. This assimilation module is an extension of the aerosol optical depth (AOD) assimilation system already presented by Sič et al. (2016). We focus on the period of the TRAQA (TRAnsport à longue distance et Qualité de l’Air dans le bassin méditerranéen) field campaign that took place during summer 2012. This period offers the opportunity to have access to a large set of aerosol observations from instrumented aircraft, balloons, satellite and ground-based stations. We evaluate the added value of CALIOP assimilation with respect to the model free run by comparing both fields to independent observations issued from the TRAQA field campaign. In this study we focus on the desert dust outbreak which happened during late June 2012 over the Mediterranean Basin (MB) during the TRAQA campaign. The comparison with the AERONET (Aerosol Robotic Network) AOD measurements shows that the assimilation of CALIOP lidar observations improves the statistics compared to the model free run. The correlation between AERONET and the model (assimilation) is 0.682 (0.753); the bias and the root mean square error (RMSE), due to CALIOP assimilation, are reduced from −0.063 to 0.048 and from 0.183 to 0.148, respectively. Compared to MODIS (Moderate-resolution Imaging Spectroradiometer) AOD observations, the model free run shows an underestimation of the AOD values, whereas the CALIOP assimilation corrects this underestimation and shows a quantitative good improvement in terms of AOD maps over the MB. The correlation between MODIS and the model (assimilation) during the dust outbreak is 0.47 (0.52), whereas the bias is −0.18 (−0.02) and the RMSE is 0.36 (0.30). The comparison of in situ aircraft and balloon measurements to both modelled and assimilated outputs shows that the CALIOP lidar assimilation highly improves the model aerosol field. The evaluation with the LOAC (Light Optical Particle Counter) measurements indicates that the aerosol vertical profiles are well simulated by the direct model but with a general underestimation of the aerosol number concentration, especially in the altitude range 2–5 km. The CALIOP assimilation improves these results by a factor of 2.5 to 5. Analysis of the vertical distribution of the desert aerosol concentration shows that the aerosol dust transport event is well captured by the model but with an underestimated intensity. The assimilation of CALIOP observations allows the improvement of the geographical representation of the event within the model as well as its intensity by a factor of 2 in the altitude range 1–5 km.

Highlights

  • Aerosols play an important role in the atmospheric system of our planet

  • In this study we focus on the desert dust outbreak which happened during late June 2012 over the Mediterranean Basin (MB) during the TRAQA campaign

  • We focus on the African dust event that occurred in late June–early July 2012 over the Mediterranean Basin (MB) during the TRAQA (TRAnsport à longue distance et Qualité de l’Air dans le bassin méditerranéen) field campaign held between 26 and 11 July 2012

Read more

Summary

Introduction

Aerosols play an important role in the atmospheric system of our planet. They have a significant impact on the Earth’s radiation budget by direct scattering/absorption of sunlight and by changing cloud properties (e.g. Tegen and Lacis, 1996). 1. present the lidar assimilation module as well as the first results dealing with the assimilation of CALIOP observations in terms of extinction coefficient into the MOCAGE CTM and. The impact of the CALIOP extinction coefficient assimilation on the aerosol distribution has been evaluated using a set of independent data including AERONET (AErosol RObotic NETwork), MODIS, aircraft as well as balloon measurements. Results concerning the assimilation of CALIOP lidar measurements during the TRAQA field campaign are presented in Sect.

Assimilated observations
The model and assimilation system
Lidar assimilation
Independent observations used for the evaluation of assimilated fields
AERONET
In situ measurements during the TRAQA field campaign
Aircraft measurement
Assimilation of CALIOP Lidar measurements during the TRAQA field campaign
Performance of the assimilation
Comparison with MODIS observations
Comparison to AERONET observations
Comparison with the aircraft in situ measurements
Comparison with LOAC in situ measurements
Vertical structure of aerosol concentration
Findings
Summary and conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call