Abstract
Ship-borne measurements of inorganic and organic aerosols, including methanesulfonic acid (MSA), were conducted over the Northern Pacific using a High Resolution Time of Flight Aerosol Mass Spectrometer (AMS). This study, conducted aboard the Korean ice breaker R/V Araon, was part of the SHIP-borne Pole-to-Pole Observations (SHIPPO) project. Based on air mass source region, the cruise track could be divided into five sections. Overall, the South Asia and Northern Japan ship transects showed higher aerosol concentrations due to continental pollution and biomass burning sources, respectively. In all five regions, the average mass concentrations of sulfate and organic aerosols (OA) were much higher than concentrations of nitrate and ammonium. Positive matrix factorization (PMF) analysis distinguished two organic aerosol factors as hydrocarbon-like and oxidized OA (HOA and OOA). HOA peaked in South Asia under the influence of anthropogenic pollution source areas, such as China and Korea, and generally decreased with increasing latitude across the full study region. OOA concentrations peaked in Northern Japan near the Tsugaru Strait and appear to reflect fine particle contributions from biomass burning. The mean HOA concentration in the clean marine area (Aleutian Island to Siberia) was 0.06 μg/m3 and comprised approximately 8% of the OA mass fraction. The highest MSA concentrations peaked in the Aleutian Islands at nearly 15 μg/m3, suggesting influence from higher dimethyl sulfide (DMS) emissions resulting from biological nutrient uptake during summer. The MSA/sulfate ratio, an indicator of the relative fine particle contributions of DMS and anthropogenic sources, revealed a sharp gradient as the ship approached the clean marine areas where the dominance of DMS increased. The patterns in OOA, HOA, and MSA concentrations found in this study provide a better understanding of the characteristics of inorganic and organic aerosols in the Northern Pacific Ocean.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.