Abstract

The occurrence of Asian dust storms, and the subsequent transport of yellow dust (YD) greatly influences the air quality of lee-side countries such as Korea and Japan. The dust is also frequently transported in a southward direction by a strong cold high-pressure system that affects the air quality in Taiwan. This study reports the aerosol properties that were monitored continuously at the Taiwan aerosol supersite during YD events in 2002. Based on the observations of meteorology and aerosols, we divided the time interval of a YD event into a before period, during period, and after period. Among the seven observed YD events, the second event was marked with the maximum hourly PM 10 level at 502 μg m −3, and with the longest during period for a total of 147 h. The averages of the hourly PM 10 and PM 2.5−10 were much higher in the during period as compared to those in the before period. It is interesting to note that the time lapse in the during period was well correlated with the maximum level of both PM 10 and PM 2.5−10. It must be noted that the PM 2.5 levels were dramatically increased in the after period, which was due to the accumulation of particles influenced by the anticyclonic outflow. The aerosol size distribution in the third YD event verified that supermicron particles dominated in the during period, and that submicron particles were predominant in the before and after periods. For the chemical properties of the aerosols, time series results indicated that sulfates were mostly contributed by the dust transport, and the others were more related to vehicle exhausts. However, they all accumulated in the period of atmospheric stagnancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.