Abstract

Aerosol-cloud interactions are a major source of uncertainty in weather and climate models. These interactions and associated precipitation feedbacks are modulated by spatial distributions of aerosols on global and regional scales. Aerosols also vary on mesoscales, including around wildfires, industrial regions, and cities, but the impacts of variability on these scales are understudied. Here, we first present observations of covarying mesoscale aerosol and cloud distributions on the mesoscale. Then, using a high-resolution process model, we show that horizontal aerosol gradients of order 100 km drive a thermally-direct circulation we call an “aerosol breeze”. We find that aerosol breezes support initiation of clouds and precipitation over the low-aerosol portion of the gradient while suppressing their development on the high-aerosol end. Aerosol gradients also enhance domain-wide cloudiness and precipitation, compared with homogenous distributions of the same aerosol mass, leading to potential biases in models that do not adequately represent this mesoscale aerosol heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.