Abstract
The tungsten carbonyl dimethyldithiolene (dmdt) complexes W(CO)4(dmdt), W(CO)2(dmdt)2, and W(dmdt)3 were evaluated as potential single-source precursors for the chemical vapor deposition of WS2. The results of TGA-MS, DIP-MS, and pyrolysis with NMR analysis were consistent with a thermal decomposition pathway in which loss of 2-butyne through a retro[3+2]cycloaddition of the dithiolene ligand generated terminal sulfido ligands. Aerosol-assisted chemical vapor deposition onto silicon substrates was performed using all three complexes, yielding 2H-WS2 thin films as characterized by Raman spectroscopy and GI-XRD. Film morphology and elemental composition of the films were determined using SEM, EDS, and XPS. Four-point probe measurements afforded a film resistivity of 8.37 Ωcm for a sample deposited from W(dmdt)3 in toluene at 600 °C.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.