Abstract
Weather prediction is essential to the daily life of human beings. Current numerical weather prediction models such as the Global Forecast System (GFS) are still subject to substantial forecast biases and rarely consider the impact of atmospheric aerosol, despite the consensus that aerosol is one of the most important sources of uncertainty in the climate system. Here we demonstrate that atmospheric aerosol is one of the important drivers biasing daily temperature prediction. By comparing observations and the GFS prediction, we find that the monthly-averaged bias in the 24-h temperature forecast varies between ± 1.5 °C in regions influenced by atmospheric aerosol. The biases depend on the properties of aerosol, the underlying land surface, and aerosol–cloud interactions over oceans. It is also revealed that forecast errors are rapidly magnified over time in regions featuring high aerosol loadings. Our study provides direct “observational” evidence of aerosol’s impacts on daily weather forecast, and bridges the gaps between the weather forecast and climate science regarding the understanding of the impact of atmospheric aerosol.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.