Abstract
Healthcare personnels (HCPs) are at risk of respiratory infectious diseases during patient care activities. HCPs rely primarily on personal protective equipment to prevent pathogen exposures, but there is a need to develop alternative, or complementary control strategies, including engineering controls. The objective of this study was to evaluate the ability of the 3 designs (denoted D1A, D1B, and D2) of the University of Utah Containment Ventilation for Exposure Reduction (U-COVER), a protective barrier enclosure device to contain respirable aerosols when placed over a simulated patient. The 2 primary performance metrics were the percent reduction in: (i) the concentration of respirable aerosols in the simulated breathing zone of an HCP, and (ii) surface contamination outside the device, which were tested using salt aerosols and fluorescein aerosols, respectively. Briefly, salt or fluorescein aerosols were generated as though expelled by a prone patient under 3 conditions: (i) no device (control), (ii) with the device but without exhaust ventilation, and (iii) with the device with exhaust ventilation. Device D2 was also tested under simulated use conditions, in which cardboard "arms" were placed inside the device ports. All 3 device designs showed the ability to reduce particle concentrations in the simulated HCP breathing zone and on surfaces by >99% with exhaust ventilation compared to the control condition. Without exhaust ventilation, device performance was lower and highly variable. Under simulated use conditions, device D2 reduced particle concentrations in the simulated HCP breathing zone by ≥91% and on surfaces by >99% relative to control for all combinations of "arms" tested. The U-COVER device demonstrates excellent aerosol containment and warrants further testing with dynamic simulated or actual use conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.