Abstract

The thermal structure of the Martian atmosphere, which varies diurnally, seasonally and episodically, is discussed. The atomic oxygen airglow at 1304 A is used to determine the density of atomic oxygen, and the 1216-A Lyman-alpha line is used to calculate the density of atomic hydrogen and, when coupled with the temperature measurement, the escape flux of atomic hydrogen. The most intense airglow is the IR atmospheric band of O2 at 1.27 micron that results from the photodissociation of ozone. The escape mechanism for atomic hydrogen is thermal, or Jeans, escape, while the atomic oxygen escape is caused by a nonthermal process, namely, the dissociative recombination of O2(+). The ratio of deuterium to hydrogen is enriched by a factor of 6. Three-dimensional models of the Mars thermospheric circulation show that planetary rotation has a significant effect on the wind, composition, and temperature structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.