Abstract

BackgroundTo overcome antibiotic resistance in biofilms, enzymes aimed at biofilm dispersal are under investigation. In the present study, applicability of an Aeromonas punctata derived depolymerase capable of degrading the capsular polysaccharide (CPS) of Klebsiella pneumoniae, in disrupting its biofilm and increasing gentamicin efficacy against biofilm was investigated.ResultsIntact biofilm of K. pneumoniae was recalcitrant to gentamicin due to lack of antibiotic penetration. On the other hand, gentamicin could not act on disrupted biofilm cells due to their presence in clusters. However, when depolymerase (20 units/ml) was used in combination with gentamicin (10 μg/ml), dispersal of CPS matrix by enzyme facilitated gentamicin penetration across biofilm. This resulted in significant reduction (p < 0.05) in bacterial count in intact and disrupted biofilms. Reduction in CPS after treatment with depolymerase was confirmed by confocal microscopy and enzyme linked lectinosorbent assay. Furthermore, to substantiate our study, the efficacy of bacterial depolymerase was compared with a phage borne depolymerase possessing similar application against K. pneumoniae. Although both were used at same concentration i.e. 20 units/ml, but a higher efficacy of bacterial depolymerase particularly against older biofilms was visibly clear over its phage counterpart. This could be explained due to high substrate affinity (indicated by Km value) and high turnover number (indicated by Kcat value) of the bacterial depolymerase (Km = 89.88 μM, Kcat = 285 s−1) over the phage derived one (Km = 150 μM, Kcat = 107 s−1).ConclusionOverall the study indicated that, the A. punctata derived depolymerase possesses antibiofilm potential and improves gentamicin efficacy against K. pneumoniae. Moreover, it can serve as a potential substitute to phage borne depolymerases for treating biofilms formed by K. pneumoniae.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-015-0455-z) contains supplementary material, which is available to authorized users.

Highlights

  • To overcome antibiotic resistance in biofilms, enzymes aimed at biofilm dispersal are under investigation

  • The present study was conducted to evaluate the potential of A. punctata derived depolymerase to decapsulate K. pneumoniae B5055 and improve gentamicin efficacy against its biofilms

  • In recent times, antimicrobial drug development is increasingly lagging behind the evolution of antibiotic resistance

Read more

Summary

Introduction

To overcome antibiotic resistance in biofilms, enzymes aimed at biofilm dispersal are under investigation. Applicability of an Aeromonas punctata derived depolymerase capable of degrading the capsular polysaccharide (CPS) of Klebsiella pneumoniae, in disrupting its biofilm and increasing gentamicin efficacy against biofilm was investigated. Polysaccharide-degrading enzymes like α-amylases, dispersin B (DspB), alginate lyases, deoxyribonucleases (DNAses), phage depolymerases have been successfully used for preventing biofilm formation or disrupting the biofilms of S. aureus, S. epidermidis, E. coli and P. aeruginosa, K. pneumoniae [16]. Such enzymes offer several advantages: firstly, they are safe and have no side effects. The biofilm disruption efficacy of A. punctata derived depolymerase with a previously characterized phage borne depolymerase against K. pneumoniae B5055 was compared

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call