Abstract

An integrated crustal profile of the intervening Trans-North China Orogen (TNCO) is one of the key issues to understanding the tectonic evolution of the North China Craton. However, the existing geological studies focus only on the surface-mapping based petrological, geochemical and structural analysis, but lack subsurface geophysical evidence and thus make the crustal profile interpretations ambiguous. In contrast, the current geophysical data covers a very large-scale lithospheric mantle and fails to image the detailed structural pattern of the orogenic crust. To achieve this goal, we present high-resolution aeromagnetic data for the Hengshan–Wutai–Fuping region, the largest exposure of the central TNCO. The reduced-to-pole magnetic anomaly map firstly verifies the regional tectonic subdivision that the high-grade metamorphic terranes (i.e. Hengshan and Fuping Complexes) are consistent with high-magnetic responses and long-wavelength anomalies, intervened by a low-grade terrane (Wutai Complex) characterized by low-magnetic responses and short-wavelength anomalies. 3D Euler deconvolution reveals that the tendencies of the clustered solutions show large consistence with the major structural pattern of the region which is characterized by a fan-shaped doubly-vergent orogenic wedge. Upward continuation further shows that the northwest part of the orogen yields a thicker crust and is most likely located closer to the paleosubduction zone. The new aeromagnetic data, combined with structural, petrological and metamorphic data indicate that an eastward-dipping subduction zone was most possibly active before the collision of the Western and Eastern Blocks, leading to the formation of the TNCO and the final amalgamation of the North China Craton.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call