Abstract
The Air Force Office of Scientific Research (AFOSR) has sponsored the Boundary Layer Transition (BOLT) Experiments to investigate hypersonic boundary layer transition on a low-curvature, concave surface with swept leading edges. This paper presents aeroheating measurements on a subscale model of the BOLT Flight Geometry, aerodynamic fairings, and Transition Module (TSM) in the NASA Langley 20-Inch Mach 6 Air Tunnel. The purpose of the test was to investigate and identify any areas of localized heating on the TSM for inclusion in the BOLT Critical Design Review (CDR). Surface heating distributions were measured using global phosphor thermography, and data were obtained for a range of model attitudes and free stream Reynolds numbers. Measurements showed low heating on the fairings and TSM. Additional analysis was completed after the CDR to compare heating on the TSM for the nominal BOLT vehicle reentry angle-of-attack with heating on the TSM for possible reentry angle-of-attack excursions. The results of this analysis were used in conjunction with thermal analyses from Johns Hopkins Applied Physics Lab (JHU/APL) and the Air Force Research Laboratory (AFRL) to assess the need for thermal protection on the flight vehicle TSM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.