Abstract
This work aims to design biocompatible aerogel sponges that can host and control the release of stromal cell-derived factor-1α (SDF-1α or CXCL12), a key protein for applications ranging from regenerative medicine to cancer therapy (notably for neural tissues). Miscibility of silk fibroin (SF) and hyaluronic acid (HA) was investigated by means of fluorescence and scanning electron microscopy to identify processing conditions. Series of freeze-dried sponges were prepared by associating and cross-linking within the same 3D structure, HA, SF, poly-l-lysine (PLL) and heparin (hep). Aerogel sponges presented high swelling degree and porosity (∼90 %), adequate mean pore diameter (ca. 60 μm) and connectivity for welcoming cells, and a soft texture close to that of the brain (6–13 kPa Young’s Modulus). Addition of SF yielded sponges with slower biodegradation. SF-HA and SF-HA-hep sponges retained 75 % and 93 % of the SDF-1α respectively after 7 days and were found to be cytocompatible in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.