Abstract
AbstractAerogels with ultrahigh porosity and large specific surface area have demonstrated great potential for capturing volatile organic compounds (VOCs). Especially, aerogel fiber aggregates with macropores formed by overlapping aerogel fibers and mesopores in the aerogel fibers might realize fast sorption kinetics and high sorption capacity simultaneously. However, how to develop fast fabrication and large‐scale production of aerogel fibers remains a challenge. Herein, a generic sol‐gel centrifugal spinning (SCS) strategy with a spinning rate capable of reaching 700 m min−1 is developed for producing aerogel fibers. The representative SCS aerogel fiber made from aramid nanofiber (ANF) dispersion exhibits a large specific surface area (313 m2 g−1) and high tensile strength (12.48 MPa). The SCS strategy is further applied to fabricate various kinds of aerogel fibers, including sodium alginate, cellulose, and chitosan. The ANF aerogel fiber aggregates exhibit superior VOC adsorption capacity of 438.0 mg g−1 under an ultrafast gas flux of 3.8 × 104 L m−2 h−1, which also has satisfactory cyclic stability. This work not only develops a powerful and generic strategy for fabricating aerogel fibers in large scale, but also provides inspiration for applying these SCS aerogel fibers in dynamic removal of VOCs and other environmental protection fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.