Abstract

This article introduces the application of a multidisciplinary analysis process chain based on high-fidelity simulation methods for the aeroelastic tailoring of an natural laminar flow (NLF) forward swept wing. With this approach the interactions between aerodynamics, loads and structural sizing are considered in the wing analysis. The resulting process enables an integrated aerostructural wing design including aeroelastic tailoring using carbon fiber reinforced plastics. The main feature of the process chain is the hierarchical decomposition of the problem into two levels. On the highest level, the orthotropy direction of the composite structure will be analyzed. The lower level includes the wing box sizing for essential load cases considering the static aeroelastic deformations. Thereby, the wing box sizing can be performed with a given ply share of the laminate or a ply share optimization. Additionally, the airfoil shapes are transferred from a given NLF wing design. The natural laminar flow is considered by prescribing laminar–turbulent transition locations. The process chain evaluates the wing mass, the lift-to-drag ratio under cruise flight conditions and the corresponding design mission fuel consumption. Results of aerostructural wing design studies and optimizations are presented for an NLF forward swept wing aircraft configuration. The aerostructural wing optimization with 3 orthotropy angles as design parameters shows a wing mass reduction in the order of 8% and a design mission fuel consumption reduction in the order of 4% in comparison to the aeroelastic tailored wing design of the reference aircraft.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.