Abstract

AbstractAeroelastic tailoring of a composite forward-swept wing model is investigated to achieve a minimum structure weight with increasing divergence speed and flutter speed. A novel hybrid pattern search method is proposed to perform the aeroelastic tailoring of the wing structure subject to multiple constraints including static deformation, strength, buckling, and aeroelastic characteristics. In the new hybrid pattern search method, the sensitivity analysis method and the genetic algorithm are combined to enhance the global convergence rate and obtain a global optimal solution, respectively. A global search is performed by using the genetic algorithm to obtain elite individuals as the initial values for further optimizations, and the sensitivity analysis method is applied to improve the optimization efficiency. The comparative study of the optimized results obtained by other existing modern heuristic optimization methods shows that the present method can achieve the lightest structure weight and cost t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.