Abstract

Bacterial Foraging Optimisation (BFO) is investigated in an attempt to evaluate its use in solving complex optimisation problems for aeronautical structures. A hybrid variant of BFOA, which incorporates meta-modelling techniques, is also proposed and employed. The efficiency and effectiveness of the methods are tested for tailoring a rectangular composite wing, aiming to maximise the flutter speed and for scaling a joined-wing aircraft, targeting to match aeroelastic responses between the physical prototype and wind tunnel model. The obtained results are compared with those found using a range of other biologically inspired optimisation methods (GA, PSO, ACO), proving that the social foraging behavior of motile bacteria is an effective tool for aeroelastic optimisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.