Abstract
This paper examines the use of stationary Cartesian mesh for non-linear flutter computations involving complex geometries. The surface boundary conditions are implemented using reflected points which are determined via a gridless approach. The method uses a cloud of nodes in the vicinity of the surface to get a weighted-average of the flow properties using radial basis functions. To ensure computational efficiency and for local grid refinements, multigrid computations within an embedded grids framework are used. As the displacements of moving surfaces from their original position are typically small for flutter problems, a small perturbation boundary condition method is used to account for the moving surfaces. The method therefore does not require repeated grid re-generation for the deforming surfaces. The overall method is both accurate and robust. Computations of the well-known Onera M6 wing, RAE wing-body configuration, the AGARD 445.6 wing flutter test case show good accuracy and efficiencies. Simulations of the aeroelastic behavior of a complete fighter-type aircraft with wing tip missiles at high transonic speeds further demonstrate the practical usefulness of the present boundary conditions technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.