Abstract

The present study aims to investigate a newly developed multirate time integration technique on aeroelastic simulations of the DTU 10 MW reference wind turbine inside a turbulent atmospheric boundary layer. The turbine is modelled using an actuator line model and a multibody structural solver is employed for the dynamic response. The turbine is studied under cases of laminar flow and a pressure driven boundary layer. Results show that the scheme exhibits high accuracy and matches the theoretical order of the Runge–Kutta scheme. During unsteady operations, substantial deformations were observed that are influenced mainly by the turbine’s rotation and the effect of turbulence in fatigue loading is highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.