Abstract

This work unveils the linear aeroelastic flutter attributes of functionally graded triply periodic minimal surface (FG-TPMS) beams. The Euler-Bernoulli theory including neutral axis shift effect is used to model the FG-TPMS beams. The functional grading is achieved by varying the wall thickness of unit cells according to power-law form. Analysis is carried out for four TPMS patterns, mainly gyroid, primitive, diamond and IWP, under various boundary conditions. Using Hamilton's principle, governing differential equations are derived whose solutions are obtained numerically using the Ritz method. The mode shapes at various values of aerodynamic pressure have also been evaluated. It can be concluded that the type of pattern, boundary conditions, relative cell density, neutral axis shift effect and gradient index plays a crucial role in the prediction of flutter instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.