Abstract
Abstract For successful implementation of casing treatment designs in axial compressors, apart from the stall margin improvement benefits, aeroelasticity also plays a major role. This manuscript addresses the not often discussed aeroelastic aspects of a new discrete type of passive self-recirculating casing treatment (RCT) designed for a transonic axial compressor stage. Experiments are carefully designed for synchronized measurement of the unsteady fluidic disturbances and vibrations during rotating stall for compressor with baseline solid casing and self-RCT. The modal characteristics of the axial compressor rotor-disk assembly are studied experimentally and numerically. Experimentally it is observed that the rotating stall cells excite the blades in their fundamental mode in a compressor with baseline solid casing at the stall flow condition. In contrast, there is no excitation of the blades in the compressor with self-RCT at the same solid casing stall flow condition. Also, the self-RCT compared to the solid casing can significantly reduce the overall vibration levels of the blades that are excited at the stall flow condition. The casing treatment is able to alter the flow field near the tip region of the rotor blade, and hence influencing the forcing function of the rotating cantilever blades to have the aeroelastic benefit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.