Abstract

Sandwich structures with lattice cores are novel, lightweight composite structures and are widely used in the aerospace industry. Besides, the aeroelastic behavior of sandwich panels in a supersonic flow regime still needs to be thoroughly studied. This work investigates the supersonic flutter of a sandwich panel whose core is topology-optimized. A finite element model of a sandwich panel based on the layerwise theory, coupled with the first-order piston theory, is presented. The sandwich panel core is assessed using a topology optimization approach with flutter loading constraints. The subsequent analytical homogenization scheme is developed to provide the equivalent mechanical properties of the topology-optimized panel. The modeling approach is fully validated, and the results demonstrate that the sandwich panel is capable of enlarging the flutter-free operational flight range when compared with other conventional panel designs. A parametric analysis of the topology-optimized sandwich panel regarding the critical flutter conditions is performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.