Abstract

It is known that plunging airfoil can produce both lift and thrust with certain combination of plunging amplitude and frequency. Motivated by our interest in micro air vehicles (MAVs), we utilize a NavierStokes equation solver to investigate the aerodynamics of a flapping airfoil. The roles of the plunging and pitching amplitude and frequency, and Strouhal number are studied. For a symmetric plunging airfoil NACA0012 at zero geometric angle of attack and chord Reynolds number of 2×10 4 , at the same plunging frequency, it can produce either drag or thrust depending on the plunging amplitude. At the considered plunging amplitude (from 0.0125c to 0.075c), the flow history has more influence than the kinematic angle of attack to determine the lift. When drag is produced, the viscous force dominates the total drag with decreasing influence as the plunging amplitude increases. For an airfoil experiencing combined plunge and pitch motion, both thrust and input power increase with the Strouhal number (within the range of 0.03 to 0.5). For the case studied, the thrust is induced by the lift, which approximately follows the curve of the kinematic angle of attack. Leading edge vortex moves downstream and interacts with the trailing edge vortex. We also study the impact of gust on stationary airfoil and flapping airfoil. Within the range of the parameters tested, for stationary airfoil the lift is in phase with the velocity but the drag is slightly out of phase. For flapping airfoil, neither lift nor drag is in phase with the velocity. Nomenclature CD =Drag coefficient per unit span CL =Lift coefficient per unit span CP =input power coefficient CP,mean =time-averaged input power coefficient CT =thrust coefficient CT,mean =time-averaged thrust coefficient c =Chord length

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call