Abstract
Some spiders aerially disperse relying on their fine fibres. This behaviour has been known as 'ballooning'. Observations on the ballooning behaviour of spiders have a long history and have more recently received special attention, yet its underlying physics is still poorly understood. It was traditionally believed that spiders rely on the airflows by atmospheric thermal convection to do ballooning. However, a recent experiment showed that exposure to an electric field alone can induce spiders' pre-ballooning behaviours (tiptoe and dropping/dangling) and even pulls them upwards in the air. The controversy between explanations of ballooning by aerodynamic flow or the earth's electric field has long existed. The major obstacle in studying the physics of ballooning is the fact that airflow and electric field are both invisible and our naked eyes can hardly recognise the ballooning silk fibres of spiders. This review explores the theory and evidence for the physical mechanisms of spiders' ballooning connects them to the behavioural physiology of spiders for ballooning. Knowledge gaps that need to be addressed in future studies are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.