Abstract
Recently, a novel concept of flapping Micro-Air-Vehicles (FMAVs) with four wings has been proposed, which potentially utilizes the clap-and-fling effect for lift enhancement and agile maneuvers through an adjustment of wing kinematics. However, the application of the clap-and-fling effect in the four-winged FMAVs is underexplored and the dynamic stability is still unclear. In this paper, aerodynamics and flight dynamic stability of the four-winged FMAVs are studied experimentally and numerically. Results show that the clap-and-fling effect is observed when the flapping frequency is above 18 Hz. Due to the clap-and-fling effect, the lift generation and aerodynamic efficiency are both improved, which is mainly attributed to the fling phase. Further studies show that the clap-and-fling effect becomes weaker as the wing root spacing increases and is almost absent at a wing root spacing of 1.73 chord length. In addition, a wing with an aspect ratio of 3 can increase both lift generation and efficiency due to the clap-and-fling effect. Finally, according to the dynamic stability analysis of the four-winged FMAV, the divergence speed of the lateral oscillation mode is about 4 times faster than that of the longitudinal oscillation mode. Our results can provide guidance on the design and control of four-winged FMAVs.
Highlights
With the rapid development of microelectronics and microfabrication technology, the concept of Micro-Air-Vehicle (MAV) [1] has been proposed by the Defense Advanced Research Projects Agency (DARPA) in the 1990s
3.1 Aerodynamic performance of a typical micro four-wing flapping Micro-Air-Vehicles (FMAVs) Averaged lift of a typical micro four-winged FMAV model was firstly measured to verify the effect of the clap-and-fling effect on lift production
Once the flapping frequency is higher than 18 Hz, lift produced by wing with clap-and-fling effect motion becomes larger than that without the motion and the lift difference caused by clap-and-fling effect almost increases linearly with wing flapping frequency
Summary
With the rapid development of microelectronics and microfabrication technology, the concept of Micro-Air-Vehicle (MAV) [1] has been proposed by the Defense Advanced Research Projects Agency (DARPA) in the 1990s. In the last two decades, the unsteady high-lift mechanisms and flight mechanics of natural insects have been widely studied and their feasibility applied into FMAV design has been proved [3,4,5]. With the theories how insects fly in mind, scientists turned their focus into how to fully apply those flying principles to a man-made FMAV and conducted systematical researches on aerodynamic, structure, power and control problems. Extensive experimental and numerical studies have been conducted on the effects of wing geometrical [14,15,16] (including wing aspect ratio, area, span et al.) and on both lift and power consumption. After flying test of both vertical take-off and hovering flight, the dynamic stability of those bionic FMAVs has been further studied to guide flight control system design so as to achieve maneuvering flight
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.