Abstract

The large commercial passengers airplanes are mostly designed to have symmetrical body with respect to the longitudinal axis. However for small passengers airplanes or for the airplane designed as UAV plat form is normally having an unsymmetrical fuselage. The aerodynamics characteristics fuselage may give a strong influence to the overall aerodynamics characteristics of the airplane. The present work investigates the aerodynamics characteristics of the unsymmetrical fuselage with respect to the longitudinal axis. The fuselage assumed to have circular cross section and the coordinate of the fuselage are created by using the same equation which had been used in defining the coordinate of cambered airfoil NACA series four digits. The fuselage had been set to have the same maximum thickness 15 % of the fuselage length and different fuselage models are obtained through varying the position as well as the value of the maximum camber line. The semi empirical aerodynamic method for estimating the fuselage lift coefficient CL, drag coefficient CDand the fuselage pitching moment coefficient CMsuch as given by DATCOM are well established. However when it came to the unsymmetrical fuselage, this approach can not be adopted easily. The required of angle attack at zero lift of the corresponding unsymmetrical fuselage is difficult to define. The result for particular cambered fuselage indicates that the aerodynamics characteristics strongly influenced by how the fuselages camber lines look likes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.