Abstract
Most technological devices use butterfly valves to check the flow rate and speed, through piping. Their main advantages are their low cost, their mechanical suitability for fast operation, and their small pressure drops when they are fully open. The fluid dynamic torque about the axis of large valves has to be considered as the actuator could be overstrained. This torque is generally defined using a nondimensional coefficient KT, in which the static pressure drop created by the valve is used for normalization. When the valve is closed downstream of an elbow, the valve pressure drop is not well defined. Thus, the classic normalization method gives many ambiguities. To avoid the use of the pressure drop, we define another torque coefficient CT in which the dynamic pressure of the flow is the normalization factor instead of the pressure drop. Advantages and drawbacks of each normalization method are described in the following.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.