Abstract
This work presents a computational fluid dynamic (CFD) analysis of a drag reduction system (DRS) used in a Formula Student competition vehicle, focusing on the interaction between the triple wing elements, as well as on the electrical actuators used to provide movement to the upper two flaps. The S1123 wing profile was chosen, and a 2D analysis of the wing profile was made. The trailing edge was rounded off to conform to Formula Student competition safety rules, resulting in around a 4% decrease in the lift coefficient and around a 12% increase in the drag coefficient for an angle of attack of 12°, compared to the original wing profile. The multi-element profile characteristics are: wing main plate with 4°, first flap 28°, and second flap 60°. To evaluate the wing operation, end plates and electrical linear actuators were added, generating a maximum lift coefficient of 1.160 and drag coefficient of 0.397, which provides around a 10% reduction in lift and a 9% increase in drag compared to the absence of the linear actuators. When activating the DRS, the flap rotation generates about a 78% decrease in the aerodynamic drag coefficient and 53% in the lift coefficient for the minimum aerodynamic drag setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.