Abstract

To reduce the aerodynamic load of super high-speed elevators, in this paper, the coefficient of drag [Formula: see text] and the coefficient of yawing moment [Formula: see text] of the elevator are selected as optimization objectives for the optimization of the air rectification cover (ARC) shape. The elliptic curve method was used to build the parametric model of the ARCs, six design variables were selected, and the design space of the ARC was determined. With the optimal Latin hypercube design method, the training points were selected, and the computational fluid dynamics numerical simulation was conducted to calculate the corresponding responses. Then, the relationship between the design variables and the responses was analyzed. The radial basis function (RBF) surrogate model of the relationship between the design variables and responses was constructed. Finally, the non-dominated sorting genetic algorithm-II (NSGA-II) was employed to optimize the shape of the ARC. The results show that the [Formula: see text] and [Formula: see text] decrease by 16.51% and 60.92%, respectively, compared with the unoptimized ARC, indicating that the ARC designed in this paper is optimized and can effectively reduce the aerodynamic load. Furthermore, among all the design variables, the bluntness of the ARC in the [Formula: see text]-direction has the most significant effect on the aerodynamic load, and the height of the ARC ([Formula: see text] and [Formula: see text]) has the second most significant effect on the aerodynamic load of elevators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.