Abstract

One of the challenges in Unmanned (Combat) Aerial Vehicles (UCAV) is the improvement of aerodynamic performance to complete diverse missions, increase endurance and lower fuel consumption. Recent advances in design tools, materials, electronics and actuators have opened the door for implementation of transonic flow control technologies to improve aerodynamic efficiency. This paper explores the application of a robust Multi-Objective Evolutionary Algorithm (MOEA) for the design and optimisation of aerofoil sections and wing planform of UAVs and UCAVs. The methodology is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing and asynchronous evaluation. For the design and optimisation of UCAV wing planform shape, an aero-diamond planform shape with a jagged trailing edge is considered like saw tooth. Results obtained from the combination between the approach and the aerodynamic analysis tools show the improvement of the aerodynamic efficiency, a set of shock-free aerofoils and the supercritical aero-diamond wing. Results also indicate that the method is capable to produce non-dominated solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call