Abstract

PurposeThe purpose of this paper is to propose a robust optimization strategy to deal with the aerodynamic optimization issue, which does not need a large sum of information on the uncertainty of input parameters.Design/methodology/approachInterval numbers were adopted to describe the uncertain input, which only requires bounds and does not necessarily need probability distributions. Based on the method, model outputs were also regarded as intervals. To identify a better solution, an order relation was used to rank interval numbers.FindingsBased on intervals analysis method, the uncertain optimization problem was transformed into nested optimization. The outer optimization was used to optimize the design vector, and inner optimization was used to compute the interval of model outputs. A flying wing aircraft was used as a basis for uncertainty optimization through the suggested optimization strategy, and optimization results demonstrated the validity of the method.Originality/valueIn aircraft conceptual design, the uncertain information of design parameters are often insufficient. Interval number programming method used for uncertainty analysis is effective for aerodynamic robust optimization for aircraft conceptual design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.