Abstract
ABSTRACT This paper presents the effect of an inclined casing groove on the aerodynamic performance of a single-stage transonic axial compressor, NASA Stage 38, using three-dimensional Reynold-averaged-Navier-Stokes equations with the k-ε turbulence model. The research was carried out to examine the effects of four casing groove parameters: angle, width, depth, and location. Validation of a numerical model for a single-stage transonic axial compressor was conducted to evaluate the computational fluid dynamics method. Most of the simulations showed positive results with an increase in stall margin, adiabatic efficiency, and total pressure ratio, in which the maximum stall margin, adiabatic efficiency, and total pressure ratio can be raised by 87.09%, 0.13%, and 1.57%, respectively, as compared to the smooth casing case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.