Abstract
Corrugations are folds on a surface as found on wings of dragon fly insects. Although they fly at relatively lower altitudes its wings are adapted for better aerodynamic and aero-elastic characteristics. In the present work, three airfoil geometries were studied using the 2-D panel method to evaluate the aerodynamic performance for low Reynolds number. The experiments were conducted in wind tunnel for incompressible flow regime to demonstrate the coefficients of lift drag and glide ratio at two Reynolds numbers 1.9x104 and 1.5x105 and for angles of attack ranging between 00 and 160. The panel method results have been validated using the current and existing experiment data as well as with the computational work from cited literature. A good agreement between the experimental and the panel methods were found for low angles of attack. The results showed that till 80 angle of attack higher lift coefficient and lower drag coefficient are obtainable for corrugated airfoils as compared to NACA 0010. The validation of surface pressure coefficients for all three airfoils using the panel method at 40 angles of attack was done. The contours of the non-dimensional pressure and velocity are illustrated from -100 to 200 angles of attack. A good correlation between the experiment data and the computational methods revealed that the corrugated airfoils exhibit better aerodynamic performance than NACA 0010.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.