Abstract
This study assesses the effectiveness of modified blade-tip configurations in achieving passive noise control in industrial fans. The concepts developed here, which are based on the addition of end-plates at the fan-blade tip, are shown to have a beneficial effect on the fan aeroacoustic signature as a result of the changes they induce in tip-leakage-flow behavior. The aerodynamic merits of the proposed blade-tip concepts are investigated by experimental and computational studies in a fully ducted configuration. The flow mechanisms in the blade-tip region are correlated with the specific end-plate design features, and their role in the creation of overall acoustic emissions is clarified. The tip-leakage flows of the fans are analyzed in terms of vortex structure, chordwise leakage flow, and loading distribution. Rotor losses are also investigated. The modifications to blade-tip geometry are found to have marked effects on the multiple vortex behaviors of leakage flow as a result of changes in the near-wall fluid flow paths on both blade surfaces. The improvements in rotor efficiency are assessed and correlated with the control of tip-leakage flows produced by the modified tip end-plates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.