Abstract

In the present study, we perform a wind-tunnel experiment to investigate the aerodynamic performance of a gliding swallowtail-butterfly wing model having a low aspect ratio. The drag, lift and pitching moment are directly measured using a 6-axis force/torque sensor. The lift coefficient increases rapidly at attack angles less than 10° and then slowly at larger attack angles. The lift coefficient does not fall off rapidly even at quite high angles of attack, showing the characteristics of low-aspect-ratio wings. On the other hand, the drag coefficient increases more rapidly at higher angles of attack due to the increase in the effective area responsible for the drag. The maximum lift-to-drag ratio of the present modeled swallowtail butterfly wing is larger than those of wings of fruitfly and bumblebee, and even comparable to those of wings of birds such as the petrel and starling. From the measurement of pitching moment, we show that the modeled swallowtail butterfly wing has a longitudinal static stability. Flow visualization shows that the flow separated from the leading edge reattaches on the wing surface at α < 15°, forming a small separation bubble, and full separation occurs at α ≥ 15°. On the other hand, strong wing-tip vortices are observed in the wake at α ≥ 5° and they are an important source of the lift as well as the main reason for broad stall. Finally, in the absence of long hind-wing tails, the lift and longitudinal static stability are reduced, indicating that the hind-wing tails play an important role in enhancing the aerodynamic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.