Abstract

In the modern aerodynamic design of turbomachinery blades, the geometries of blades often need to be reshaped to achieve better aerodynamic performance by introducing extra parametric design variables. A higher variable dimension will lead to a larger sampling range as well as a sparser sample distribution, which challenges the effectiveness and stability of optimization schemes based on surrogate model by making the model prediction quality even poorer. In this paper, a multi-objective optimization based on Gaussian process model was carried out for a high dimensional design space. Based on the previous two-dimensional optimization, tandem stators of a modern compressor were optimized by the design of sweep and dihedral. The purpose of the study is to improve the aerodynamic performance of the compressor tandem stators as well as to provide an effective optimization scheme for high dimensional multi-objective optimization problems. The design of sweep and dihedral for reshaping the tandem stators consists of a total of 18 design variables. An improvement in total pressure recovery coefficient of at least 0.7% at positive incidence and at least 0.3% at negative incidence was obtained, much larger than that in the previous two-dimensional optimization. The optimization process shows that, by using Gaussian process as the surrogate model and a special sampling strategy, this optimization scheme is effective and efficient to handle this high dimensional space. The aerodynamic influences of design parameters of tandem blades were analyzed in detail and the superiority of sweep and dihedral in reducing aerodynamic loss was confirmed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call