Abstract

Abstract This paper aims at optimizing a Turbine Based Combined Cycle (TBCC) nozzle for upgrading its aerodynamic performance in multiple flight conditions. An in-house RANS solver called NSAWET is employed for aerodynamic evaluation. The optimizer is a differential evolution algorithm combined with a response surface. Firstly, a two-dimensional model of the initial TBCC nozzle system is investigated. The flow field of the nozzle contains complicated shockwave interactions that cause thrust loss. Then multi-point aerodynamic optimization of a two-dimensional ramjet nozzle is carried out, which objectives are to maximize the thrust coefficients at Mach numbers 2.5, 3.0 and 4.0. The objective functions are increased substantially at the first two Mach numbers after optimization, while slightly decreased at the last Mach number. The turbine flow path is built up based on the optimized profile and the performances in typical flight conditions are validated. Results demonstrate that both the ramjet and turbine nozzles are improved in most flight conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call