Abstract

This work aims to optimize the aerodynamic parameters (airfoil chord lengths and twist angles smoothed using Bezier curves) of the NREL 5MW wind turbine and a wind turbine designed for site-specific wind conditions to increase the wind turbine's annual energy production (AEP) under this site conditions. This optimization process is carried out using a Genetic Algorithm (GA) developed in MATLAB and coupled with NREL's FAST Modularization Framework. The results shows that after optimizing the NREL 5MW wind turbine design, the AEP was improved by 5.9% of the baseline design AEP while a site-specific designed wind turbine using Schmitz equations shows 1.2% improvement in AEP. These results shows that optimization of wind turbine blade aerodynamic parameters for site-specific wind conditions leads to improvement in AEP and hence decreasing cost of energy generated by wind turbines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.