Abstract

During the operation of an active clearance control (ACC) system of a turbine, the aerodynamic performance of the intake grille indirectly influences its control. To improve the performance, an aerodynamic optimization method is proposed, consisting of parameterization, an optimization algorithm, and a fitness evaluation. During parameterization, its geometry is represented by seven geometric variables. A modified social spider algorithm is used as the optimization algorithm. To evaluate the aerodynamic performance of the grille, a special fitness function is adopted, obtained using an adaptive topological multi-layer feedforward artificial neural network. To verify the feasibility of this method, experiments and numerical calculations are carried out on the original and optimized intake grilles. The results show that the average intake flow rate and average total pressure recovery coefficient of the optimized grille have increased by 17.3% and 4.9%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.