Abstract

This paper is concerned with an optimal shape design problem in aerodynamics. The inverse problem in question consists in finding the optimal shape an airfoil placed in a potential flow at a given angle of attack should have such that the pressure distribution on its surface matches a desired one. The numerical method to achieve this aim is based on a body-fitted grid generation technique (elliptic, O-type) to generate a mesh over the airfoil surface and solve for the flow equation. The O-type scheme is used due to its ability to generate a high quality (fine and orthogonal) grid around the airfoil surface. This paper describes a novel and very efficient sensitivity analysis scheme to compute the sensitivity of the pressure distribution to variation of grid node positions and both the conjugate gradient method (CGM) and a version of the quasi-Newton method (i.e., BFGS) are used as optimization algorithms to minimize the difference between the computed pressure distribution on the airfoil surface and desired one. The elliptic grid generation technique allows us to map the physical domain (body) onto a fixed computational domain and to discretize the flow equation using the finite difference method (FDM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.