Abstract
The aerodynamics of the glider with supersonic airfoil have been optimized numerically by combining the multi-island genetic algorithm (MIGA) with the simulated annealing (SA) methods. The corresponding results show that the improved hybrid MIGA-SA method can effectively solve the glider optimal design issues such as nonlinear, discontinuous, and multi-dimensional multimodal function etc. The glider optimal aerodynamic geometry can be quickly obtained by using of the hybrid MIGA-SA method under the conditions of huge design space and low calculating resource requirements. The optimized results have also indicated that the aerodynamic characteristics for the double curved airfoil are always superior to the hexagonal airfoil. The total length of wing span located closer to the constraint value can greatly increase the wing area, decrease wing load and benefit in gliding. The final optimal geometry can greatly extend the flight distance for the glider. These results could provide the reference data for designing the gliders with supersonic airfoil in aerodynamic geometry, control system as well as the structural optimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.