Abstract
This study presents a novel numerical methodology that is designed for the dynamic adjustment of three-dimensional high-rise building configurations in response to aerodynamic forces. The approach combines two core components: a numerical simulation of fluid flow and the adjoint method. Through a comprehensive sensitivity analysis, the influence of individual variables on aerodynamic loads, including lift and drag coefficients, is assessed. The findings underscore that the architectural design, specifically the building’s construction pattern, exerts the most substantial impact on these forces, accounting for a substantial proportion (76%). Consequently, the study extends its evaluation to the sensitivity of fluid flow across various sections of the tower by solving the adjoint equation throughout the entire fluid domain. As a result, the derived sensitivity vector indicates a remarkable reduction of approximately 31% in the applied loads on the tower. This notable improvement has significant implications for the construction of tall buildings, as it effectively mitigates aerodynamic forces, ultimately enhancing the overall comfort and structural stability of these architectural marvels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.