Abstract

Aerodynamic modeling and parameter estimation from quick accesses recorder (QAR) data is an important technical way to analyze the effects of highland weather conditions upon aerodynamic characteristics of airplane. It is also an essential content of flight accident analysis. The related techniques are developed in the present paper, including the geometric method for angle of attack and sideslip angle estimation, the extended Kalman filter associated with modified Bryson-Frazier smoother (EKF-MBF) method for aerodynamic coefficient identification, the radial basis function (RBF) neural network method for aerodynamic modeling, and the Delta method for stability/control derivative estimation. As an application example, the QAR data of a civil airplane approaching a high-altitude airport are processed and the aerodynamic coefficient and derivative estimates are obtained. The estimation results are reasonable, which shows that the developed techniques are feasible. The causes for the distribution of aerodynamic derivative estimates are analyzed. Accordingly, several measures to improve estimation accuracy are put forward.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.