Abstract

The main purpose of this study was to assess the influence of the environmental temperature on both the aerodynamic flow evolving around the bicycle and cycling power output. The CFD method was used to investigate the detailed flow field around the cyclist/bicycle system for a constant speed of 11.1 m/s (40 km/h) without wind. In complement, a mathematical model was used to determine the temperature-dependent power output in the range [−10; 40 °C]. The numerical investigation gives valuable information about the turbulent flow field in the cyclist's wake which evolves accordingly the surrounding temperature. A major result of this study is that the areas of overpressure upstream of the cyclist and of underpressure downstream of him are less extensive for a temperature of 40 °C compared to −10 °C. The results suggest that the aerodynamic braking effect of the bicycle is minimized when the air temperature is high, as a lower air density results in a reduction in drag on the cyclist. This study showed that the power required to maintain a constant speed is reduced when the temperature is high, the reason being a lower aerodynamic resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call